Abstract:
This data shows the model nodes, indicating water level only and/or flow and water levels along the centre-line of rivers that have been modelled to generate the CFRAM flood maps. The nodes estimate maximum design event flood flows and maximum flood levels.
Flood event probabilities are referred to in terms of a percentage Annual Exceedance Probability, or ‘AEP’. This represents the probability of an event of this, or greater, severity occurring in any given year. These probabilities may also be expressed as odds (e.g. 100 to 1) of the event occurring in any given year. They are also commonly referred to in terms of a return period (e.g. the 100-year flood), although this period is not the length of time that will elapse between two such events occurring, as, although unlikely, two very severe events may occur within a short space of time.
The following sets out a range of flood event probabilities for which fluvial and coastal flood maps are typically developed, expressed in terms of Annual Exceedance Probability (AEP), and identifies their parallels under other forms of expression:
10% (High Probability) Annual Exceedance Probability which can also be expressed as the 10 Year Return Period and as a 10:1 odds of occurrence in any given year.
1% (Medium Probability - Fluvail/River Flood Maps) Annual Exceedance Probability which can also be expressed as the 100 Year Return Period and as 100:1 odds of occurrence in any given year.
0.5% (Medium Probability - Coastal Flood Maps) Annual Exceedance Probability which can also be expressed as the 200 Year Return Period and as 200:1 odds of occurrence in any given year.
0.1% (Low Probability) Annual Exceedance Probability which can also be expressed as the 1000 Year Return Period and as 1000:1 odds of occurrence in any given year.
The High-End Future Scenario extents where generated taking in in the potential effects of climate change using an increase in rainfall of 30% and sea level rise of 1,000 mm (40 inches).
Data has been produced for the 'Areas of Further Assessment' (AFAs), as required by the EU 'Floods' Directive [2007/60/EC] and designated under the Preliminary Flood Risk Assessment, and also for other reaches between the AFAs and down to the sea that are referred to as 'Medium Priority Watercourses' (MPWs). River reaches that have been modelled are indicated by the CFRAM Modelled River Centrelines dataset.
Flooding from other reaches of river may occur, but has not been mapped, and so areas that are not shown as being within a flood extent may therefore be at risk of flooding from unmodelled rivers (as well as from other sources).
The purpose of the Flood Maps is not to designate individual properties at risk of flooding. They are community-based maps.
Lineage:
Fluvial and coastal flood map data is developed using hydrodynamic modelling, based on calculated design river flows and extreme sea levels, surveyed channel cross-sections, in-bank / bank-side / coastal structures, Digital Terrain Models, and other relevant datasets (e.g. land use, data on past floods for model calibration, etc.).
The process may vary for particular areas or maps. Technical Hydrology and Hydraulics Reports set out full technical details on the derivation of the flood maps.
For fluvial flood levels, calibration and verification of the models make use of the best available data, including hydrometric records, photographs, videos, press articles and anecdotal information. Subject to the availability of suitable calibration data, models are verified in so far as possible to target vertical water level accuracies of approximately +/-0.2m for areas within the AFAs, and approximately +/-0.4m along the MPWs.
For coastal flood levels, the accuracy of the predicted annual exceedance probability (AEP) of combined tide and surge levels depends on the accuracy of the various components used in deriving these levels i.e. accuracy of the tidal and surge model, the accuracy of the statistical data and the accuracy for the conversion from marine datum to land levelling datum. The output of the water level modelling, combined with the extreme value analysis undertaken as detailed above is generally within +/-0.2m for confidence limits of 95% at the 0.1% AEP. Higher probability (lower return period) events are expected to have tighter confidence limits.
Purpose:
The data has been developed to comply with the requirements of the European Communities (Assessment and Management of Flood Risks) Regulations 2010 to 2015 (the “Regulations”) (implementing Directive 2007/60/EC) for the purposes of establishing a framework for the assessment and management of flood risks, aiming at the reduction of adverse consequences for human health, the environment, cultural heritage and economic activity associated with floods.